How do you simplify #(21!)/(17!4!)#?

2 Answers
Oct 30, 2016

#5985#

Explanation:

#(21!)/(17! xx 4!)=(17! xx 18 xx 19 xx 20 xx 21)/(17! xx4!)#

may be simplified as

#=(18 xx 19 xx 20 xx 21)/(1 xx 2 xx 3 xx 4)#

and this may be further simplified as

#=(9 xx 19 xx 5 xx 7)/(1 xx 1 xx 1 xx 1)#

#=9 xx19 xx 5 xx 7#

#=5985#

Oct 30, 2016

Write out the definitions of each factorial and you should get #5985#.


#=> (1cdot2cdot3cdot4cdots17cdot18cdot19cdot20cdot21)/((1cdot2cdot3cdot4cdots15cdot16cdot17)(1cdot2cdot3cdot4))#

The portion of #21!# that is before #18cdot19cdot20cdot21# cancels out.

#= (18cdot19cdot20cdot21)/(1cdot2cdot3cdot4)#

#= ((19-1)cdot19cdot20(20+1))/(24)#

#= ((361 - 19)cdot(400 + 20))/(24)#

#= (342cdot420)/(24)#

#= (171cdot420)/(12)#

#= (171cdot210)/(6)#

#= (57cdot210)/(2)#

#= 57cdot105#

#= 57cdot(100 + 5)#

#= 5700 + 57cdot10/2#

#= 5700 + 285#

#= color(blue)(5985)#