How do you find the antiderivative of #int sin^5(3x)cos(3x)dx#?
1 Answer
Nov 3, 2016
Explanation:
#I=intsin^5(3x)cos(3x)dx#
First let
#I=1/3intsin^5(3x)cos(3x)(3dx)#
#I=1/3intsin^5(u)cos(u)du#
Now, let
#I=1/3intv^5dv#
Integrating using the typical power rule for integration:
#I=1/3 v^6/6+C#
Since
#I=sin^6(u)/18+C#
Since
#I=sin^6(3x)/18+C#