How do you solve #cotx=tan(2x-3pi)# in the interval [0,360]?

2 Answers
Sep 15, 2016

#x={30^o,150^o,210^o,330^o}#

Explanation:

#cotx=tan(2x-3pi)=tan-(3pi-2x)=-tan(3pi-2x)=-(-tan2x)=tan2x#

Hence #1/tanx=(2tanx)/(1-tan^2x)# or

#2tan^2x=1-tan^2x# or

#3tan^2x=1# or

#tan^2x=1/3# and

#tanx=+-1/sqrt3=+-tan(pi/6)=tan(+-pi/6)#

Hence #x=npi+-pi/6#

and in interval #[0^o,360^o]#

#x={30^o,150^o,210^o,330^o}#

Nov 4, 2016

#"Solution set "{30^@,90^@,150^@,210^@,270^@,330^@}#

Explanation:

#cotx=tan(2x-3pi)#

#=>tan(2x-3pi)=cotx#

#=>tan(-3pi+2x)=tan(pi/2-x)#

#=>tan(2x)=tan(pi/2-x)#

#=>2x=npi+pi/2-x," where n" in ZZ#

#=>3x=npi+pi/2," where n" in ZZ#

#=>x=1/3xxnpi+pi/6," where n" in ZZ#

#=>x=1/6(2n+1)pi" where n" in ZZ#

To evaluate x in the interval #[0.360]#

For n = 0

#=>x=1/6(2xx0+1)pi=180/6=30^@#

For n =1

#=>x=1/6(2xx1+1)pi=180/2=90^@#

For n =2

#=>x=1/6(2xx2+1)pi=(5xx180)/6=150^@#

For n =3

#=>x=1/6(2xx3+1)pi=(7xx180)/6=210^@#

For n =4

#=>x=1/6(2xx4+1)pi=(9xx180)/6=270^@#

For n =5

#=>x=1/6(2xx5+1)pi=(11xx180)/6=330^@#