How do you solve #f(n)=-3n^4-6n^3-3n^2-9n-7# for #n=-2#?

1 Answer
Nov 6, 2016

#f(-2) = 5#

Explanation:

For each #n# in the equation substitute #-2# to give:

#f(-2) = -3(-2^4) - 6(-2^3) - 3(-2^2) - 9(-2) - 7#

#f(-2) = (-3(-2*-2*-2*-2)) - (6(-2*-2*-2)) - (3(-2*-2)) - (9*-2) - 7#

#f(-2) = (-3*16) - (6*-8) - (3*2) + 18 - 7#

#f(-2) = -48 + 48 - 6 + 18 - 7#

#f(-2) = 5#