How do you differentiate #y=(1+e^(2x))/(2-e^(2x))#?

1 Answer
Nov 7, 2016

#:.y'=(6e^(2x))/(2-e^(2x))^2#

Explanation:

The quotient rule

#y=u/v=>y'=(u'v-uv')/v^2#

#y=(1+e^(2x))/(2-e^(2x))#

#u=1+e^(2x)=>u'=2e^(2x)#

#v=2-e^(2x)=>v'=-2e^(2x)#

#:.y'=(2e^(2x)(2-e^(2x))-(1+e^(2x))(-2e^(2x)))/(2-e^(2x))^2#

#:.y'=[2e^(2x)[(2-e^(2x))+(1+e^(2x))]]/(2-e^(2x))^2#

#:.y'=[2e^(2x)[(2-cancel(e^(2x)))+(1+cancel(e^(2x)))]]/(2-e^(2x))^2#

#:.y'=[2e^(2x)[2+1]]/(2-e^(2x))^2#

#:.y'=(6e^(2x))/(2-e^(2x))^2#