How do you convert #x^2 + y^2 - 2ax = 0# to polar form?

2 Answers
Nov 7, 2016

tHe polar form is #r-2acostheta=0#

Explanation:

To convert a cartesian equation to a polar equation, we use the following.
#x=rcostheta# and #y=sintheta#
#x^2+y^2-2ax=0# #=># #r^2cos^2theta+r^2sin^2theta-2arcostheta=0#
Simplifying
#r^2-2arcostheta=0#
#r-2acostheta=0#

Nov 7, 2016

#r=2acostheta#

Explanation:

Using the pass equations

#{(x=rcostheta),(y=rsintheta):}#

#r^2cos^2theta+r^2sin^2theta-2arcostheta=0# or

#r(r-2acostheta)=0# so we have

#r=0# which is a point at the origin of coordinates and

#r=2acostheta#