Question #bf859

1 Answer
Nov 7, 2016

#(d^2y)/dx^2 =(4y^2sec^2(2x)tan(2x)+y^2 -sec^4(2x)-2xsec^2(2x)-x^2) /y^3 #

Explanation:

#y^2-x^2=tan2x#

#2y dy/dx-2x=2sec^2(2x)#

#2y dy/dx=2sec^2(2x)+2x#

#dy/dx=(2sec^2(2x)+2x)/(2y)#

#dy/dx=(sec^2(2x)+x)/y#

You can use the quotient rule or just do implicit differentiation again and then substitute in #(sec^2(2x)+x)/y# for #dy/dx#

#(d^2y)/dx^2 =(4sec(2x)sec(2x)tan(2x)+1)/y -(sec^2(2x)+x)/y^2 dy/dx #

#(d^2y)/dx^2 =(4sec(2x)sec(2x)tan(2x)+1)/y -(sec^2(2x)+x)/y^2 *(sec^2(2x)+x)/y#

#(d^2y)/dx^2 =(4sec^2(2x)tan(2x)+1)/y -(sec^4(2x)+2xsec^2(2x)+x^2)/y^3 #

#(d^2y)/dx^2 =(4y^2sec^2(2x)tan(2x)+y^2 -sec^4(2x)-2xsec^2(2x)-x^2) /y^3 #