How do you find the derivative of #y=arctan(secx + tanx)#?
1 Answer
Nov 9, 2016
Explanation:
Rearranging:
#tany=secx+tanx#
Differentiating both sides, and recalling to use the chain rule on the left:
#sec^2y*dy/dx=secxtanx+sec^2x#
Solving for the derivative:
#dy/dx=(secxtanx+sec^2x)/sec^2y#
Using the Pythagorean identity:
#dy/dx=(secxtanx+sec^2x)/(1+tan^2y)#
Using
#dy/dx=(secxtanx+sec^2x)/(1+(secx+tanx)^2)#