How do you verify #csctheta-cottheta=1/(csctheta+cottheta)#?

1 Answer
Nov 12, 2016

see below

Explanation:

#csctheta-cot theta=1/(csctheta+cot theta)#

Right Side:#=1/(csctheta+cot theta)#

#=1/(csctheta+cot theta)*(csctheta-cot theta)/(csctheta-cot theta)#

#=(csctheta-cot theta)/(csc^2theta-cot ^2theta)#

#=(csctheta-cot theta)/1# Note: #csc^2theta-cot ^2theta=1# from the

pythagorean identity #1+cot^2theta=csc^2theta#

#=csctheta-cot theta#

#:.=# Left Side