How do you find AB if #A=[(4,3), (7,2)]# and #B=[(8,5),(9,6)]#? Precalculus Matrix Algebra Multiplication of Matrices 1 Answer Narad T. Nov 13, 2016 #AB=((59,38),(74,47))# Explanation: #A=((4,3),(7,2))# #B=((8,5),(9,6))# #((a,b),(c,d))((e,f),(g,h))=((ae+bg,af+bh),(ce+dg,cf+dh))# #AB=((4,3),(7,2))((8,5),(9,6))=((4*8+3*9,4*5+3*6),(7*8+2*9,7*5+2*6))# #=((59,38),(74,47))# Answer link Related questions What is multiplication of matrices? How do I do multiplication of matrices? What is scalar multiplication of matrices? What are some sample matrix multiplication problems? How do I multiply the matrix #((6, 4, 24),(1, -9, 8))# by 4? How do I multiply the matrix #((3, 0, -19),(0, 7, 1), (1, 1/5, 2/3))# by -6? How do I multiply the matrix #((6, 4, 24),(1, -9, 8))# by the matrix #((1, 5, 0), (3, -6, 2))#? Is matrix multiplication associative? If #A=((-4, 5),(3, 2))# and #B=((-6, 2), (1/2, 3/4))#, what is #AB#? In matrix multiplication, does ABC=ACB? See all questions in Multiplication of Matrices Impact of this question 2084 views around the world You can reuse this answer Creative Commons License