How do you divide #(2x^3+9x^2+2x-21)div(x+3)# using synthetic division?

1 Answer
Nov 15, 2016

The quotient is #=(2x^2+3x-7)#

Explanation:

Let's do the long division

#color(white)(aaaa)##2x^3+9x^2+2x-21##color(white)(aaaa)##∣##x+3#

#color(white)(aaaa)##2x^3+6x^2##color(white)(aaaaaaaaaaaaa)##∣##2x^2+3x-7#

#color(white)(aaaaaa)##0+3x^2+2x#

#color(white)(aaaaaaaa)##+3x^2+9x#

#color(white)(aaaaaaaaaaa)##0-7x-21#

#color(white)(aaaaaaaaaaaaa)##-7x-21#

#color(white)(aaaaaaaaaaaaaaa)##-0-0#

The quotient is #=(2x^2+3x-7)#

no remainder