How do you find the Maclaurin Series for #f(x)= sin(x+π) #?

1 Answer
Nov 15, 2016

# sin(x+pi) = -x+x^3/(3!)-x^5/(5!)+x^7/(7!)-...#

Explanation:

# f(x) = sin(x+ pi) #

Using the trig sum formula

# sin(A+B) -= sinAcosB+cosAsinB #

Then

# f(x) = sinxcospi+sinpicosx #
# :. f(x) = sinx(-1)+(0)cosx #
# :. f(x) = -sinx #

The Maclaurin Series for sinx is
#sinx=x-x^3/(3!)+x^5/(5!)-x^7/(7!)+...#

Hence,
# f(x) = -x+x^3/(3!)-x^5/(5!)+x^7/(7!)-...#