How do you factor #1-x^8# ?
2 Answers
Explanation:
Remember
=
=
Explanation:
The difference of squares identity can be written:
#a^2-b^2 = (a-b)(a+b)#
Note also that:
#(a^2-kab+b^2)(a^2+kab+b^2) = a^4+(2-k^2)a^2b^2+b^4#
In particular, putting
#(a^2-sqrt(2)ab+b^2)(a^2+sqrt(2)ab+b^2) = a^4+b^4#
So we find:
#1 - x^8 = 1^2-(x^4)^2#
#color(white)(1-x^8) = (1-x^4)(1+x^4)#
#color(white)(1-x^8) = (1^2-(x^2)^2)(1^4+x^4)#
#color(white)(1-x^8) = (1-x^2)(1+x^2)(1^2-sqrt(2)x+x^2)(1^2+sqrt(2)x+x^2)#
#color(white)(1-x^8) = (1^2-x^2)(1+x^2)(1-sqrt(2)x+x^2)(1+sqrt(2)x+x^2)#
#color(white)(1-x^8) = (1-x)(1+x)(1+x^2)(1-sqrt(2)x+x^2)(1+sqrt(2)x+x^2)#
The remaining quadratic factors have no linear factors with Real coefficients.