Step 1) Solve the first equation for #x# while keeping the equation balanced:
#-4x - 12y + 12y = -16 + 12y#
#-4x = -16 + 12y#
#(-4x)/-4 = (-16 + 12y)/-4#
#x = (-16)/-4 + (12y)/-4#
#x = 4 - 3y#
Step 2) Substitute #4 - 3y# for #x# in the second equation and solve for #x# while keeping the equation balanced:
#-3(4 - 3y) + 3y = 12#
#-12 + 9y + 3y = 12#
#-12 + 12y = 12#
#-12 + 12y + 12 = 12 + 12#
#12y = 24#
#(12y)/12 = 24/12#
#y = 2#
Step 3) Substitute #2# for #y# in the solution for the first equation and calculate #x#:
#x = 4 - (3*2)#
#x = 4 - 6#
#x = -2#