How do you find the antiderivative of #f(x)=x^4-5x^3+2x-6#?

2 Answers
Nov 20, 2016

#=x^5/5-5/4x^4+x^2-6x+C#

Explanation:

The antiderivative of #f(x)# is determined by applying
#" "#
the antiderivate of polynomial rule.
#" "#
The antiderivative of a polynomial #x^n# where #n# is an integer is:
#int x^n dx = x^(n+1)/(n+1)+C#
#" "#
#intx^4-5x^3+2x-6#
#" "#
#=x^5/5-5/4x^4+x^2-6x+C#

Nov 20, 2016

#f(x)=x^4-5x^3+2x-6#

Let #F(x)# be the antiderivative of #f(x)#, and #C# is a constant.
#F(x)=1/5x^5-5/4x^4+x^2-6x+C#