How do you find the value of #sin^2(225^circ)#? Trigonometry Right Triangles Trigonometric Functions of Any Angle 1 Answer Shwetank Mauria Nov 21, 2016 #sin^2 225^o=1/2# Explanation: As #sin(180+A)=-sinA# #sin225^o=sin(180^o+45^o)=-sin45^o# but #sin45^o=1/sqrt2# and hence #sin225^o=-1/sqrt2# Hence, #sin^2 225^o=(-1/sqrt2)^2=1/2# Answer link Related questions How do you find the trigonometric functions of any angle? What is the reference angle? How do you use the ordered pairs on a unit circle to evaluate a trigonometric function of any angle? What is the reference angle for #140^\circ#? How do you find the value of #cot 300^@#? What is the value of #sin -45^@#? How do you find the trigonometric functions of values that are greater than #360^@#? How do you use the reference angles to find #sin210cos330-tan 135#? How do you know if #sin 30 = sin 150#? How do you show that #(costheta)(sectheta) = 1# if #theta=pi/4#? See all questions in Trigonometric Functions of Any Angle Impact of this question 3463 views around the world You can reuse this answer Creative Commons License