If p-4 and q=-8 what is the value of #p^(3/2)-q^(-2/3)#?
2 Answers
Explanation:
information given
- variables
#\color(red)(p=4)# ,#\color(blue)(q=-8)# - equation
#\color(red)(p)^(3/2)-\color(blue)(q)^(-2/3)#
concepts applied
- negative exponent
#a^{-b}=1/(a^b)# - fractional exponent
#a^(b/c)=rootc{a^b} = (rootc a)^b#
calculation
- plug-in variable values
#\color(red)(4)^(3/2)-\(color(blue)(-8)^(-2/3))# - simplify exponents
#\sqrt(4^3)- 1/(root3 {(8^2)})# - simplify again
#sqrt(64)-1/root3 64# - simplify all roots
#8-1/4# - set all fractional values with equal denominators
#32/4-1/4#
solution
Nov 21, 2016
Explanation:
#color(blue)(p^(3/2)-q^(-2/3)#
#color(orange)(p=4#
#color(orange)(q=-8#
Let's put the variables in the equation
Apply the formulas