How do you determine the limit of #(7(e^(5n))+5n)^(1/n)# as n approaches infinity?
1 Answer
Explanation:
Let
#L=lim_(nrarroo)(7e^(5n)+5n)^(1/n)#
Taking the natural logarithm of both sides gives
#ln(L)=ln(lim_(nrarroo)(7e^(5n)+5n)^(1/n))#
Since
#ln(L)=lim_(nrarroo)ln((7e^(5n)+5n)^(1/n))#
Rewriting using logarithm rules,
#ln(L)=lim_(nrarroo)1/nln(7e^(5n)+5n)#
#ln(L)=lim_(nrarroo)ln(7e^(5n)+5n)/n#
The limit is in the indeterminate form
#ln(L)=lim_(nrarroo)(d/(dn)ln(7e^(5n)+5n))/(d/(dn)n)#
#ln(L)=lim_(nrarroo)((35e^(5n)+5)/(7e^(5n)+5n))/1#
#ln(L)=lim_(nrarroo)(35e^(5n)+5)/(7e^(5n)+5n)#
We see that
#ln(L)=5#
Rearranging to solve for the limit shows
#L=e^5#