What is the equation of the line tangent to #f(x)=x tan^2x # at #x=pi/4#?

1 Answer
Nov 22, 2016

#y-pi/4=(pi+1)(x-pi/4)#

Explanation:

For the equation we need the slope of the tangent line and the point on the curve.

Point:
#(pi/4,f(pi/4))#
#(pi/4,pi/4)#

Slope:
#f(x)=x(tanx)^2#
#f'(x)=(x)[(2)(tanx)(sec^2x)]+(1)(tan^2x)#
#f'(x)=2xtanxsec^2x+tan^2x#

#f'(pi/4)=2(pi/4)tan(pi/4)sec^2(pi/4)+tan^2(pi/4)#
#=(pi/2)(1)(sqrt2)^2+(1)^2#
#=(pi/2)(2)+1#
#=pi+1#

Point-Slope Form:
#y-y_1=m(x-x_1)#
#y-pi/4=(pi+1)(x-pi/4)#