What is #int x^3ln(x+1+x^2) dx#?
1 Answer
Explanation:
#I=intx^3ln(x^2+x+1)dx#
Use integration by parts (IBP). It takes the form
#{(u=ln(x^2+x+1),=>,du=(2x+1)/(x^2+x+1)dx),(dv=x^3dx,=>,v=1/4x^4):}#
Thus:
#I=1/4x^4ln(x^2+x+1)-1/4int(2x^5+x^4)/(x^2+x+1)#
Letting
#J=int((-x-2)/(x^2+x+1)+2x^3-x^2-x+2)dx#
Integrating the non-fractional terms first, we see that
#J=int(-x-2)/(x^2+x+1)dx+1/2x^4-1/3x^3-1/2x^2+2x#
Now let
#K=-1/2int(2x+1+3)/(x^2+x+1)=-1/2int(2x+1)/(x^2+x+1)-1/2int3/(x^2+x+1)#
The first can be solved using
#K=-1/2intdt/t-3/2int1/(x^2+x+1)dx=-1/2lnabs(t)-3/2int1/(x^2+x+1)dx#
#K=-1/2ln(x^2+x+1)-3/2int1/(x^2+x+1)dx#
Letting
#H=int1/((x+1/2)^2+3/4)dx#
Let
#H=int1/(3/4tan^2theta+3/4)(sqrt3/2sec^2thetad theta)#
#H=4/3 sqrt3/2int1/(tan^2theta+1)sec^2thetad theta#
Since
#H=2/sqrt3intd theta=2/sqrt3theta#
From
#H=2/sqrt3arctan((2x+1)/sqrt3)#
Now back-substituting into
#K=-1/2ln(x^2+x+1)-sqrt3arctan((2x+1)/sqrt3)#
This fits into
#J=-1/2ln(x^2+x+1)-sqrt3arctan((2x+1)/sqrt3)+1/2x^4-1/3x^3-1/2x^2+2x#
Finally, since
#I=1/4x^4ln(x^2+x+1)+1/8ln(x^2+x+1)+sqrt3/4arctan((2x+1)/sqrt3)-1/8x^4+1/12x^3+1/8x^2-1/2x+C#