How do you simplify #(- \frac { 2n ^ { 4} \cdot - 2m n ^ { 4} \cdot 2m ^ { 0} n ^ { - 4} } { ( 2n ) ^ { 2} } ) ^ { 2}#?

1 Answer
Nov 23, 2016

#=4n^4m^2#

Explanation:

Simplifying the given power is determined by multiplying the
#" "#
powers, dividing them ,and finally squaring it by applying power of a power.
#" "#
Multiplication of powers is evaluated by multiplying the real
#" "#
numbers then adding exponents of powers having same base.
#" "#
#color(blue)(Ex: )#
#" "#
#color(blue)((-2a^3bxx3a)=(-2xx3)(a^3xxa^1)(b)=-6a^(3+1)b=-6a^4b)#
#" "#
Division of powers is evaluated by simplifying the real numbers
#" "#
then subtracting exponents of powers having same base.
#" "#
#color(red)(Ex: )#
#" "#
#color(red)((8n^4)/(16n^2)=(8/16)(n^4/n^2)=(1/2)(n^(4-2))=1/2n^2)#
#" "#
Power of a power is evaluated by multiplying the exponents.
#" "#
#color(green)(Ex: )#
#" "#
#color(green)((a^2)^3=a^(2xx3)=a^6)#

#" "#
#(-(2n^4.-2mn^4 .2m^0n^(-4))/(2n)^2)^2#
#" "#
#=(-(2n^4.-2mn^4 .2xx1xxn^(-4))/(2n)^2)^2" "#Substituting #" "m^0=1#
#" "#
#=((-(2xx-2xx2xx1)(n^4xxn^4xxn^(-4))m)/(4n^2))^2#
#" "#
#=(color(blue)(-(-8)(n^(4+4-4))m)/(4n^2))^2#
#" "#
#=((+8n^4m)/(4n^2))^2#
#" "#
#=(color(red)((8/4)(n^(4-2))m))^2#
#" "#
#=(2n^2m)^2#
#" "#
#=color(green)(2^2(n^2)^2m^2)#
#" "#
#=4n^4m^2#