Question #f3a89

1 Answer
Nov 24, 2016

Given #tanx=4/5 and pi<x<2pi#

So #pi/2 < x/2 < pi=>x/2 in" 2nd quadrant"#

Hence #tan(x/2)-> -ve#

Now given formula is

#tan2x=(2tanx)/(1-tan^2x)#

Substituting #x" for "x/2# we get

#tanx=(2tan(x/2))/(1-tan^2(x/2))#

#=>4/5=(2tan(x/2))/(1-tan^2(x/2))#

Let #tan(x/2)=y#

#=>cancel4^2/5=(cancel2y)/(1-y^2)#

#=>5y=2-2y^2#

#=>2y^2+5y-2=0#

#=>y=(-5-sqrt(5^2-4*2*(-2)))/(2*2)#

#=>y=(-5-sqrt41)/4#

#=>tan(x/2)=(-5-sqrt41)/4#

[since #tan(x/2)# to be negative as explained above +ve root of y is neglected]