Given #tanx=4/5 and pi<x<2pi#
So #pi/2 < x/2 < pi=>x/2 in" 2nd quadrant"#
Hence #tan(x/2)-> -ve#
Now given formula is
#tan2x=(2tanx)/(1-tan^2x)#
Substituting #x" for "x/2# we get
#tanx=(2tan(x/2))/(1-tan^2(x/2))#
#=>4/5=(2tan(x/2))/(1-tan^2(x/2))#
Let #tan(x/2)=y#
#=>cancel4^2/5=(cancel2y)/(1-y^2)#
#=>5y=2-2y^2#
#=>2y^2+5y-2=0#
#=>y=(-5-sqrt(5^2-4*2*(-2)))/(2*2)#
#=>y=(-5-sqrt41)/4#
#=>tan(x/2)=(-5-sqrt41)/4#
[since #tan(x/2)# to be negative as explained above +ve root of y is neglected]