How do you integrate #ln(2x)#?

1 Answer
Nov 24, 2016

#x(ln(2x)-1)+C#

Explanation:

#I=intln(2x)dx#

We should use integration by parts in the absence of all other possible integration strategies. Integration by parts takes the form #intudv=uv-intvdu#. For #intln(2x)dx#, let:

#{(u=ln(2x),=>,du=2/(2x)=1/x),(dv=dx,=>,v=x):}#

Thus:

#I=uv-intvdu=xln(2x)-intx1/xdx#

#I=xln(2x)-intdx#

#I=xln(2x)-x#

#I=x(ln(2x)-1)+C#