How do you convert the polar point #(6,120^o)# into rectangular form?

2 Answers
Nov 25, 2016

The rectangular coordinates are #=(-3, 3sqrt3)#

Explanation:

We use the following equations to convert from polar coordinates #(r,theta)# to rectangular coordinates #(x,y)#

#x=rcostheta#

#y=rsin theta#

Therefore,

#x=6cos120#º #=-6*1/2=-3#

and #y=6sin120#º #=6*sqrt3/2=3sqrt3#

So the rectangular coordinates are #=(-3, 3sqrt3)#

Nov 25, 2016

#(-3,3sqrt3)#

Explanation:

To convert from #color(blue)"polar to rectangular form"#

#color(orange)"Reminder " color(red)(bar(ul(|color(white)(2/2)color(black)(x=rcostheta , y=rsintheta)color(white)(2/2)|)))#

here r = 6 and #theta=120^@#

#rArrx=6cos120^@=-6cos60^@=-6xx1/2=-3#

and #y=6sin120^@=6sin60^@=6xxsqrt3/2=3sqrt3#

#rArr(6,120^@)=(-3,3sqrt3)#