How do you make a graph of the rosy limacon #r = 1 + 2 cos 3theta#?
1 Answer
Nov 25, 2016
The graph is inserted after conversion that befits cartesian frame.
Explanation:
You can see that rose curves
limacons, with n = 1.
See the roses, with
a = 1 and b =2, giving
= 2, giving
graph{(x^2+y^2)^2-(x^2+y^2)^1.5-2x^3+6xy^2=0 [-10 10 -5 5]}
graph{(x^2+y^2)^3.5-(x^2+y^2)^3-2(x^6-y^6)+30x^2y^2(x^2-y^2)=0 [10 10 -5 5]}
graph{(x^2+y^2)^3.5-2(x^2+y^2)^3-(x^6-y^6)+15x^2y^2(x^2-y^2)=0 [10 10 -5 5]}