What is the Cartesian form of #r = -sin^2theta+4sec^2theta #?

2 Answers
Nov 25, 2016

#4(x^2+y^2)^2=x^2(x^2+y^2)sqrt(x^2+y^2).# A graph is inserted.

Explanation:

The conversion formula is #r(cos theta, sin theta)=(x, y)#, giving

#cos theta = x/r and sin theta = y/r#, where #r = sqrt(x^2+y^2)#.

Substitution and reorganization gives the answer.

As r is a function of both the squares of sine and cosine, the graph

is symmetrical about #theta = 0 and theta = pi/2# ( x-axis and y-axis).

graph{(x^2+y^2)^1.5(4sqrt(x^2+y^2)-x^2)-x^2y^2=0 [-80, 80, -40, 40]}

Nov 25, 2016

#(x^2+y^2)^(3/2)x^2=4(x^2+y^2)^2-x^2y^2#

Explanation:

The relation between polar coordinates #(r.theta)# and Cartesian coordinates #(x,y)# is given by

#x=rcostheta#, #y=rsintheta#, #r^2=x^2+y^2# and #tantheta=y/x#

Hence #r=-sin^2theta+4sec^2theta#

or #r=-y^2/r^2+(4xxr^2/x^2)#

or #r^3x^2=-x^2y^2+4r^4#

or #(x^2+y^2)^(3/2)x^2=4(x^2+y^2)^2-x^2y^2#