How do you find the derivative using limits of #f(x)=1/(x-1)#?

1 Answer
Nov 26, 2016

Please see the explanation.

Explanation:

Given:#f(x) = 1/(x - 1)#, then #f(x + h) = 1/(x + h - 1)#

Find f'(x)

#f'(x) = lim_(hto0){f(x + h) - f(x)}/h#

Substitute #1/(x + h - 1)# for #f(x + h)# and #1/(x - 1)# for #f(x)#:

#f'(x) = lim_(hto0){1/(x + h - 1) - 1/(x - 1)}/h#

Multiply by 1 in the form of #(x - 1)/(x - 1)#:

#f'(x) = lim_(hto0){1/(x + h - 1) - 1/(x - 1)}/h(x - 1)/(x - 1)#

Multiply numerators and denominators:

#f'(x) = lim_(hto0){(x - 1)/(x + h - 1) - (x - 1)/(x - 1)}/(h(x - 1))#

The second term in the numerator becomes 1:

#f'(x) = lim_(hto0){(x - 1)/(x + h - 1) - 1}/(h(x - 1))#

Multiply by 1 in the form of #(x + h - 1)/(x + h - 1)#:

#f'(x) = lim_(hto0){(x - 1)/(x + h - 1) - 1}/(h(x - 1))(x + h - 1)/(x + h - 1)#

Multiply numerators and denominators:

#f'(x) = lim_(hto0){((x - 1)(x + h - 1))/(x + h - 1) - (x + h - 1)}/(h(x - 1)(x + h - 1))#

I shall mark what cancels:

#f'(x) = lim_(hto0){((x - 1)cancel(x + h - 1))/cancel(x + h - 1) - (x + h - 1)}/(h(x - 1)(x + h - 1))#

Remove the canceled factors:

#f'(x) = lim_(hto0){(x - 1) - (x + h - 1)}/(h(x - 1)(x + h - 1))#

Distribute the -1 in the numerator:

#f'(x) = lim_(hto0){x - 1 - x - h + 1}/(h(x - 1)(x + h - 1))#

Combine like terms in the numerator:

#f'(x) = lim_(hto0){-h}/(h(x - 1)(x + h - 1))#

#-h/h# becomes -1:

#f'(x) = lim_(hto0){-1}/((x - 1)(x + h - 1))#

It is safe to let #hto0#:

#f'(x) = {-1}/((x - 1)(x - 1))#

Simplify:

#f'(x) = -1/(x - 1)^2#