Question #18ffc

2 Answers
Nov 27, 2016

See proof below

Explanation:

We use #cos^2x+sin^2x=1#

#sin^2x-1=-cos^2x#

#sin^2x=1-cos^2x#

LHS

#=tan^4x-sec^4x=sin^4x/cos^4x-1/cos^4x#

#=(sin^4x-1)/cos^4x=((sin^2x+1)(sin^2x-1))/cos^4x#

#=-(cos^x(sin^2x+1))/(cos^4x)=-(sin^2x+1)/cos^2x#

#=-(1-cos^2x+1)/cos^2x=(cos^2x-2)/cos^2x#

#=1-2/cos^2x=1-2sec^2x = RHS#

Nov 27, 2016

#LHS=tan^4x-sec^4x#

#=(tan^2x-sec^2x)(tan^2x+sec^2x)#

#=(-1)(sec^2x-1+sec^2x)#

#=1-2sec^2x =RHS#

Proved

Using the identity #sec^2x-tan^2x=1#