How do you simplify #ln(e^2lne^3)#?

1 Answer
Nov 27, 2016

#=2+ln3#

Explanation:

Simplifying the expression is determined by applying the
#" "#
following properties:
#" "#
#color(blue)(ln(axxb)=lna + lnb)#
#" "#
#color(red)(lne^a=a)#
#" "#
#ln(e^2lne^3)#
#" "#
#=ln(e^2xxcolor(red) 3)#
#" "#
#=ln(e^2 xx3)#
#" "#
#=color(blue)(lne^2 + ln3#
#" "#
#=color(red)2 + ln3#
#" "#