Question #5cf65
1 Answer
Nov 27, 2016
Currently, as is, the identity is false. If we change
We know that
#(cosx/sinx - sinx/cosx)/(sinx+ cosx) = 1/sinx - 1/cosx#
#((cos^2x - sin^2x)/(sinxcosx))/(sinx + cosx) = (cosx - sinx)/(cosxsinx)#
#((cosx + sinx)(cosx - sinx))/((sinxcosx)(cosx + sinx)) =(cosx - sinx)/(cosxsinx)#
#(cosx - sinx)/(sinxcosx) = (cosx - sinx)/(cosxsinx)#
#LHS = RHS#
Identity proved!
Hopefully this helps!