Question #61687

2 Answers
Nov 29, 2016

#sin^2x-cos^2x=sqrt2/2#

#=>-cos2x=sqrt2/2=1/sqrt2#

#=>cos2x=-1/sqrt2=-cos(pi/4)#

#cos2x=cos(pi-pi/4)=cos((3pi)/4)#

#=>2x=2npi±((3pi)/4)#

#=>x=npi±((3pi)/8)," where "n in ZZ#

Nov 29, 2016

(3pi)/8 + kpi
(5pi)/8 + kpi

Explanation:

Use trig identity: #(sin^2 x - cos^2 x = - cos 2x)#
#-cos 2x = sqrt2/2#
#cos 2x = - sqrt2/2#
Unit circle and trig table of special arcs -->
#cos 2x = -sqrt2/2# gives 2 solutions arcs for 2x:
#2x = (3pi)/4# and #2x = (5pi)/4# (co-terminal to #(-3pi)/4#)

a. #2x = (3pi)/4 + 2kpi#
#x = (3pi)/8 + kpi#

b. #2x = (5pi)/4 + 2kpi#
#x = (5pi)/8 + kpi#