How do you use partial fraction decomposition to decompose the fraction to integrate #(-x - 38)/(2x^2 + 9x - 5) #?
1 Answer
# int(-x-38)/(2x^2+9x-5) dx= 3ln|x+5| -7/2ln|2x-1| + c#
Explanation:
First we need to factorise the denominator.
To do this we need to find factors of
# :. 2x^2+9x-5 = 2x^2 +10x - x -5 #
# :. 2x^2+9x-5 =2x(x+5) - (x+5) #
# :. 2x^2+9x-5 =(x+5)(2x-1) #
Therefore we can write the integrand as follows:
# (-x-38)/(2x^2+9x-5) = (-x-38)/((x+5)(2x-1))#
And thge partial fraction decomposition will be:
# \ \ \ \ \ (-x-38)/(2x^2+9x-5) = A/(x+5) + B/(2x-1)#
# :. (-x-38)/(2x^2+9x-5) = (A(2x-1)+B(x+5))/((x+5)(2x-1)) #
# :. \ \ \ \ (-x-38) = A(2x-1)+B(x+5) #
Subs
And Sub
Hence, the partial fraction decomposition of the integrand is:
# (-x-38)/(2x^2+9x-5) = 3/(x+5) -7/(2x-1)#
And so;
# int(-x-38)/(2x^2+9x-5) dx= int 3/(x+5) -7/(2x-1) dx#
And integrating we get:
# int(-x-38)/(2x^2+9x-5) dx= 3ln|x+5| -7/2ln|2x-1| + c#