How do you find the discriminant of #x^2-12x+4=0#?
1 Answer
Dec 1, 2016
Explanation:
#x^2-12x+4 = 0#
is in the form:
#ax^2+bx+c = 0#
with
It has discriminant
#Delta = b^2-4ac = (-12)^2-4(1)(4) = 144-16 = 128 = 2*8^2#
Since
We can find the roots using the quadratic formula:
#x = (-b+-sqrt(b^2-4ac))/(2a)#
#color(white)(x) = (-b+-sqrt(Delta))/(2a)#
#color(white)(x) = (12+-sqrt(2*8^2))/2#
#color(white)(x) = (12+-8sqrt(2))/2#
#color(white)(x) = 6+-4sqrt(2)#