What is the integral of #int sin(3x) * cos(4x) dx#? Calculus Introduction to Integration Integrals of Trigonometric Functions 1 Answer Narad T. Dec 2, 2016 The answer is #=-cos7x/14-cosx/2 +C# Explanation: #sin(a+b)=sinacosb+sinbcosa# #sin(a-b)=sinacosb-sinbcosa# #sin(a+b)+sin(a-b)=2sinacosb# #sinacosb=1/2(sin(a+b)+sin(a-b))# Therefore #cos3xsin4x=1/2(sin(3x+4x)+sin(4x-3x))# #=1/2(sin7x+sinx)# So, #intcos3xsin4xdx=1/2int(sin7x+sinx)# #=-1/2((cos7x)/7+cosx)+C# #=-(cos7x)/14-cosx/2 +C# Answer link Related questions How do I evaluate the indefinite integral #intsin^3(x)*cos^2(x)dx# ? How do I evaluate the indefinite integral #intsin^6(x)*cos^3(x)dx# ? How do I evaluate the indefinite integral #intcos^5(x)dx# ? How do I evaluate the indefinite integral #intsin^2(2t)dt# ? How do I evaluate the indefinite integral #int(1+cos(x))^2dx# ? How do I evaluate the indefinite integral #intsec^2(x)*tan(x)dx# ? How do I evaluate the indefinite integral #intcot^5(x)*sin^4(x)dx# ? How do I evaluate the indefinite integral #inttan^2(x)dx# ? How do I evaluate the indefinite integral #int(tan^2(x)+tan^4(x))^2dx# ? How do I evaluate the indefinite integral #intx*sin(x)*tan(x)dx# ? See all questions in Integrals of Trigonometric Functions Impact of this question 20465 views around the world You can reuse this answer Creative Commons License