A triangle has two corners of angles #pi /8# and #(pi)/4 #. What are the complement and supplement of the third corner?

1 Answer
Dec 3, 2016

Complement is #-22.5^circ#

Supplement is #67.5^circ#

Explanation:

Note: #pi# in radians measure equals #180^circ#

We need to find the value of the angles #pi/8# and #pi/4#

#color(orange)(pi/8=180/8=22.5^circ#

#color(brown)(pi/4=180/4=45^circ#

Our next step is to find the third angle of the triangle. For that, we use the rule #color(blue)("Sum of the angles of a triangle is"# #color(blue)(180^circ#

So,

#rarr22.5^circ+45^circ+"Third angle"=180^circ#

#rarr67.5^circ+"Third angle"=180^circ#

#rarr"Third angle"=180^circ-67.5^circ#

#color(green)(rArr"Third angle"=112.5^circ#

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Now we have come to the last step. We need to find the supplement and complement of #112.5^circ#

Let's recall

#color(violet)("Complement of an angle " x^circ=90^circ-x^circ#

#color(purple)("Supplement of an angle " x^circ=180^circ-x^circ#

So,

#"Complement"=90^circ-112.5^circ=-22.5^circ#

#"Supplement"=180^circ-112.5^circ=67.5^circ#

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Therefore, the Complement is #color(green)(-22.5^circ# and the Supplement is #color(green)(67.5^circ#

Hope this helps!!! :)