How do you evaluate # e^( ( 7 pi)/4 i) - e^( ( 13 pi)/12 i)# using trigonometric functions?

1 Answer
Dec 3, 2016

#\frac{sqrt(3)+3}{2sqrt(2)}-i\frac{sqrt(3)+3}{2sqrt(2)}#

Explanation:

Since #e^{itheta} = cos(theta)+isin(theta)#, your expression becomes

#cos((7pi)/4)+isin((7pi)/4)-(cos((13pi)/12)+isin((13pi)/12))#

Now let's work with the angles: since #(7pi)/4 = 2pi-pi/4 = -pi/4#, we have that

  • #cos((7pi)/4) = cos(-pi/4) = cos(pi/4) = sqrt(2)/2#
  • #sin((7pi)/4) = sin(-pi/4) = -sin(pi/4) = -sqrt(2)/2#

On the other hand, we have that #(13pi)/12 = pi+pi/12#, and so the transformations are

  • #cos((13pi)/12) = cos(pi+pi/12) = -cos(pi/12) = -\frac{sqrt(3)+1}{2sqrt(2)}#
  • #sin((13pi)/12) = sin(pi+pi/12) = -sin(pi/12) = -\frac{sqrt(3)-1}{2sqrt(2)}#

So, your expression becomes

#sqrt(2)/2-isqrt(2)/2-(-\frac{sqrt(3)+1}{2sqrt(2)}-i(-\frac{sqrt(3)-1}{2sqrt(2)}))#

Which simplifies into

#sqrt(2)/2-isqrt(2)/2+\frac{sqrt(3)+1}{2sqrt(2)}-i\frac{sqrt(3)-1}{2sqrt(2)}#

You can write it with just one denominator:

#\frac{sqrt(3)+3}{2sqrt(2)}-i\frac{sqrt(3)+3}{2sqrt(2)}#