How do you simplify #tan^2x - (cot^2x + 1)/cot^2x#?
2 Answers
Use the identity
So
#=sin^2x/cos^2x- ((cos^2x/sin^2x + 1)/(cos^2x/sinx^2))#
#=sin^2x/cos^2x- ((cos^2x + sin^2x)/sin^2x)/(cos^2x/sin^2x)#
Now use
#=sin^2x/cos^2x - (1/sin^2x xx sin^2x/cos^2x)#
#=sin^2x/cos^2x - 1/cos^2x#
#=(sin^2x- 1)/cos^2x#
#= (-cos^2x)/cos^2x#
#= -1#
Hopefully this helps!
We can make use of the Pythagorean identities:
Explanation:
You can also convert all the trig functions to