How do you integrate #int (theta^2+sec^2theta)d theta#?
1 Answer
Dec 5, 2016
Explanation:
#I=int(theta^2+sec^2theta)d theta#
Split up the integral:
#I=inttheta^2d theta+intsec^2thetad theta#
Think of the following two things:
#intx^ndx=x^(n+1)/(n+1)+C# #d/dxtanx=sec^2x=>intsec^2xdx=tanx+C#
Don't be tripped up by the use of
Thus:
#I=theta^3/3+tantheta+C#