In a #DeltaABC#, right angled at #A#, a point #D# is on side #AB#. Prove that #CD^2=BC^2+BD^2#?
1 Answer
Dec 6, 2016
Explanation:
With a point
In the right angled triangle
=
or
=
#AD^2+AC^2+2BD^2+2xxBDxxAD# =
#CD^2+2BD(BD+AD)# =
#CD^2+2BDxxAB#
or