How do you show that #4cos^2x- 2 = 2sin(2x+ pi/2)#?

1 Answer
Dec 12, 2016

#=>2(2cos^2x - 1) = 2sinx[2(x+ pi/4)]#

#=>2cos^2x- 1 = sin[2(x + pi/4)]#

Make #x + pi/4 = t#.

#=>2cos^2x - 1 = sin(2t)#

By the formula #sin2x = 2sinxcosx#:

#=>2cos^2x- 1 = 2sintcost#

#=>2cos^2x - 1 = 2sin(x + pi/4)cos(x+ pi/4)#

Expand using the sum formulae #sin(A + B) = sinAcosB + cosAsinB# and #cos(A + B) = cosAcosB - sinAsinB#.

#=>2cos^2x -1 = 2(sinxcos(pi/4) + cosxsin(pi/4))(cosxcos(pi/4) - sinxsin(pi/4))#

#=>2cos^2x - 1 = 2(sinx(1/sqrt(2)) + cosx(1/sqrt(2))(cosx(1/sqrt(2)) - sinx(1/sqrt(2)))#

#=>2cos^2x - 1 = 2((sinx + cosx)/sqrt(2))((cosx - sinx)/sqrt(2))#

#=>2cos^2x- 1 = 2((cos^2x - sin^2x))/2#

#=>2cos^2x- 1 = cos^2x- sin^2x#

Use #sin^2theta + cos^2theta = 1#:

#=>2cos^2x - 1 = cos^2x + cos^2x - 1#

#=>2cos^2x - 1 = 2cos^2x - 1#

#LHS = RHS#

Identity proved!!

Hopefully this helps!