How do you show that #4cos^2x- 2 = 2sin(2x+ pi/2)#?
1 Answer
#=>2(2cos^2x - 1) = 2sinx[2(x+ pi/4)]#
#=>2cos^2x- 1 = sin[2(x + pi/4)]#
Make
#=>2cos^2x - 1 = sin(2t)#
By the formula
#=>2cos^2x- 1 = 2sintcost#
#=>2cos^2x - 1 = 2sin(x + pi/4)cos(x+ pi/4)#
Expand using the sum formulae
#=>2cos^2x -1 = 2(sinxcos(pi/4) + cosxsin(pi/4))(cosxcos(pi/4) - sinxsin(pi/4))#
#=>2cos^2x - 1 = 2(sinx(1/sqrt(2)) + cosx(1/sqrt(2))(cosx(1/sqrt(2)) - sinx(1/sqrt(2)))#
#=>2cos^2x - 1 = 2((sinx + cosx)/sqrt(2))((cosx - sinx)/sqrt(2))#
#=>2cos^2x- 1 = 2((cos^2x - sin^2x))/2#
#=>2cos^2x- 1 = cos^2x- sin^2x#
Use
#=>2cos^2x - 1 = cos^2x + cos^2x - 1#
#=>2cos^2x - 1 = 2cos^2x - 1#
#LHS = RHS#
Identity proved!!
Hopefully this helps!