We use #a^2-b^2=(a+b)(a-b)#
#intx^ndx=x^(n+1)/(n+1)# and #intdx/x=∣x∣#
Let's do a long division
#color(white)(aaaa)##4x^3-x+12x^2-4##color(white)(aaaa)##∣##4x^2-1#
#color(white)(aaaa)##4x^3-x##color(white)(aaaaaaaaaaaaaa)##∣##x+3#
#color(white)(aaaaaa)##0 -0+12x^2-4#
#color(white)(aaaaaaaaaaa)##+12x^2-3#
#color(white)(aaaaaaaaaaaaaa)##+0-1#
So,
#(4x^3-x+12x^2-4)/(4x^2-1)=x+3-1/(4x^2-1)#
#=x+3-1/((2x+1)(2x-1))#
Let's do the decomposition into partial fractions
#1/((2x+1)(2x-1))=A/(2x+1)+B/(2x-1)#
#=(A(2x-1)+B(2x+1))/((2x+1)(2x-1))#
Therefore,
#1=A(2x-1)+B(2x+1)#
Let #x=1/2#,#=>#,#1=2B#, #=>#, #B=1/2#
Let #x=-1/2#,#=>#,#1=-2A#, #=>#, #A=-1/2#
So,
#(4x^3-x+12x^2-4)/(4x^2-1)=x+3-((-1/2)/(2x+1)+(1/2)/(2x-1))#
#int((4x^3-x+12x^2-4)dx)/(4x^2-1)=int(x+3)dx+1/2int(dx)/(2x+1)-1/2int(dx)/(2x-1)#
#=x^2/2+3x+1/4ln(∣2x+1∣)-1/4ln(∣2x-1∣)+C#