How do you simplify #(-2-i)^2#?

1 Answer
Dec 14, 2016

#(-2-i)^2=3+4i#

Explanation:

In general
#color(white)("XXX")(color(red)a+color(blue)b)^2 = color(red)a^2+2color(red)acolor(blue)b+color(blue)b^2#

#(-2-i)^2 = (color(red)(""(-2))+color(blue)(""(-i)))^2#

Substituting #color(red)a=color(red)(""(-2))# and #color(blue)b=color(blue)(""(-i))#
We have
#color(white)("XXX")color(red)(""(-2))^2+2 * color(red)(""(-2)) * color(blue)(""(-i))+color(blue)(""(-i))^2#

#color(white)("XXX")= 4 + 4i -1#

#color(white)("XXX")=3+4i#