How do you differentiate #y=43^(sqrt(x))#?
1 Answer
Dec 14, 2016
Explanation:
Take the natural logarithm of both sides.
#lny = ln(43^sqrt(x))#
#lny = sqrt(x)(ln43)#
Differentiate:
#1/y(dy/dx) = 1/(2x^(1/2)) xx ln43 + sqrt(x)(0)#
#dy/dx = ((ln43)/(2x^(1/2)))/(1/y)#
#dy/dx = ( 43^sqrt(x)(ln43))/(2sqrt(x))#
Hopefully this helps!