How do you differentiate #y=43^(sqrt(x))#?

1 Answer
Dec 14, 2016

#dy/dx = ( 43^sqrt(x)(ln43))/(2sqrt(x))#

Explanation:

Take the natural logarithm of both sides.

#lny = ln(43^sqrt(x))#

#lny = sqrt(x)(ln43)#

Differentiate:

#1/y(dy/dx) = 1/(2x^(1/2)) xx ln43 + sqrt(x)(0)#

#dy/dx = ((ln43)/(2x^(1/2)))/(1/y)#

#dy/dx = ( 43^sqrt(x)(ln43))/(2sqrt(x))#

Hopefully this helps!