Question #d4016

3 Answers
Dec 15, 2016

Within the domain #x in[0,2pi)#
#sin(x)-7cos(x)=7color(white)("XX")rarrcolor(white)("XX")x = pi or x~~2.8578 ("radians")#

Explanation:

Remember that #cos(x)=+-sqrt(1-sin^2(x))#

Therefore
#color(white)("XXX")sin(x)-7cos(x)=7#

#color(white)("XXX")rarr sin(x)-7(+-sqrt(1-sin^2(x)))=7#

#color(white)("XXX")rarr sin(x)-7 =7 (+-sqrt(1-sin^2(x)))#

squaring both sides (caution: extraneous solutions may be introduced at this point)
#color(white)("XXX")rarr sin^2(x)-14sin(x)+49=49 * ( 1-sin^2(x))#

#color(white)("XXX")rarr sin^2(x)-14sin(x) =49sin^2(x)#

#color(white)("XXX")rarr 50sin^2(x)-14sin(x) =0#

#color(white)("XXX")rarr sin(x)(50sin(x)-14)=0#

#color(white)("XXX")rarr#
#color(white)("XXXXX"){: (sin(x)=0,color(white)("XX")orcolor(white)("XX"),sin(x)=14/50), (x=0 or x=pi,,x=arcsin(14/50) or x=pi-arcsin(14/50)), (,,x~~0.28379 or x~~2.85780 ("radians")) :}#

Testing these four possible solutions against the original equation
shows that #x=0 and x~~0.28379# are extraneous.

Dec 15, 2016

#sinx-7cosx=7#

#=>sinx-7cosx-7=0#

#=>2sin(x/2)cos(x/2)-7(cosx+1)=0#

#=>2sin(x/2)cos(x/2)-7*2cos^2(x/2)=0#

#=>2cos(x/2)(sin(x/2)-7cos(x/2))=0#

So #cos(x/2)=0#

#x/2=(2n+1)pi/2" where "n in ZZ#

#=>x=(2n+1)pi#

Again

#sin(x/2)=7cos(x/2)#

#=>tan(x/2)=7=tanalpha#

#" where "alpha=tan^-1(7) ~~1.43"radian"#

#"and when "cos(x/2)!=0#

So #x/2=npi+alpha " where "n in ZZ#

#=>x=2npi+2alpha#

Dec 15, 2016

The answer is #x=2.83rad#

Explanation:

We can use

#Rsin(x-alpha)=R(sinxcosalpha-cosxsinalpha)#

Comparing this to #sinx-7cosx#

We see that

#Rcosalpha=1# and #Rsinalpha=7#

#R^2cos^2alpha+R^2sin^2alpha=1+49=50#

#R=sqrt50#

#cosalpha=1/sqrt50# , #=>#, #alpha=1.43rad#

#sinalpha=7/sqrt50=1.43rad#

Therefore

#Rsin(x-alpha)=7#

#sin(x-1.43)=7/sqrt50#

#x-1.43=1.43#

#x=2.86#

Q.E.D