Remember that #cos(x)=+-sqrt(1-sin^2(x))#
Therefore
#color(white)("XXX")sin(x)-7cos(x)=7#
#color(white)("XXX")rarr sin(x)-7(+-sqrt(1-sin^2(x)))=7#
#color(white)("XXX")rarr sin(x)-7 =7 (+-sqrt(1-sin^2(x)))#
squaring both sides (caution: extraneous solutions may be introduced at this point)
#color(white)("XXX")rarr sin^2(x)-14sin(x)+49=49 * ( 1-sin^2(x))#
#color(white)("XXX")rarr sin^2(x)-14sin(x) =49sin^2(x)#
#color(white)("XXX")rarr 50sin^2(x)-14sin(x) =0#
#color(white)("XXX")rarr sin(x)(50sin(x)-14)=0#
#color(white)("XXX")rarr#
#color(white)("XXXXX"){:
(sin(x)=0,color(white)("XX")orcolor(white)("XX"),sin(x)=14/50),
(x=0 or x=pi,,x=arcsin(14/50) or x=pi-arcsin(14/50)),
(,,x~~0.28379 or x~~2.85780 ("radians"))
:}#
Testing these four possible solutions against the original equation
shows that #x=0 and x~~0.28379# are extraneous.