How do you use the limit definition of the derivative to find the derivative of #f(x)=sqrt(x+8)+3x#?

1 Answer
Dec 16, 2016

# f'(x) = 1/(2sqrt(x+8)) +3 #

Explanation:

The definition of the derivative of #y=f(x)# is

# f'(x)=lim_(h rarr 0) ( f(x+h)-f(x) ) / h #

So with # f(x) = sqrt(x+8)+3x # then;

# \ \ \ \ \ f(x+h) = sqrt((x+h)+8)+3(x+h) #
# :. f(x+h) = sqrt(x+h+8)+3x+3h #

So Then the numerator of the derivative is:
#f(x+h)-f(x)=(sqrt(x+h+8)+3x+3h) - (sqrt(x+8)+3x)#
# " "=sqrt(x+h+8)+3x+3h - sqrt(x+8)-3x#
# " "=sqrt(x+h+8) - sqrt(x+8) +3h#
# " "=(sqrt(x+h+8) - sqrt(x+8))*(sqrt(x+h+8) + sqrt(x+8))/(sqrt(x+h+8) + sqrt(x+8)) +3h#

# " "=(sqrt(x+h+8)^2 - sqrt(x+8)^2)/(sqrt(x+h+8) + sqrt(x+8)) +3h#
# " "=(x+h+8 - (x+8))/(sqrt(x+h+8) + sqrt(x+8)) +3h#
# " "=(x+h+8 - x-8)/(sqrt(x+h+8) + sqrt(x+8)) +3h#
# " "=(h)/(sqrt(x+h+8) + sqrt(x+8)) +3h#

And so the derivative of #y=f(x)# is given by:

# \ \ \ \ \ f'(x) = lim_(h rarr 0) ( f(x+h)-f(x) ) / h #
# " " = lim_(h rarr 0) ( (h)/(sqrt(x+h+8) + sqrt(x+8)) +3h) / h #
# " " = lim_(h rarr 0) ( 1/(sqrt(x+h+8) + sqrt(x+8)) +3) #
# " " = 1/(sqrt(x+8) + sqrt(x+8)) +3 #
# :. f'(x) = 1/(2sqrt(x+8)) +3 #