What is #cos(ln(x))#?
1 Answer
Dec 20, 2016
Explanation:
Given that:
#e^(i theta) = cos theta + i sin theta#
#cos (-theta) = cos(theta)#
#sin (-theta) = -sin(theta)#
we can deduce that:
#cos(theta) = (e^(itheta) + e^(-itheta))/2#
So:
#cos(ln(x)) = (e^(ilnx)+e^(-ilnx))/2#
#color(white)(cos(ln(x))) = ((e^(lnx))^i+(e^(lnx))^(-i))/2#
#color(white)(cos(ln(x))) = (x^i+x^(-i))/2#