Let's rewrite the expression
#1/(x(x^2-1)^2)=1/(x(x-1)^2(x+1)^2)#
The decomposition into partial fractions is
#1/(x(x-1)^2(x+1)^2)=A/(x)+B/(x-1)^2+C/(x-1)+D/(x+1)^2+E/(x+1)#
#=(A(x-1)^2(x+1)^2+Bx(x+1)^2+Cx(x-1)(x+1)^2+Dx(x-1)^2+Ex(x-1)^2(x+1))/(x(x-1)^2(x+1)^2)#
Therefore,
#1=A(x-1)^2(x+1)^2+B(x)(x+1)^2+Cx(x-1)(x+1)^2+Dx(x-1)^2+Ex(x-1)^2(x+1)#
Let #x=0#, #=>#, 1=A#
Let #x=1#, #=>#, #1=4B#, #=>#, #B=1/4#
Let #x=-1#, #=>#, #1=-4D#, #=>#, #D=-1/4#
Coefficients of #x^4#, #=>#,#0=A+C+E#, #=>#, #C+E=-1#
Coeficients of #x^3#, #=>#, #0=B+C+D-E#, #=>#, #C-E=0#
#C=E=-1/2#
#1/(x(x-1)^2(x+1)^2)=1/(x)+(1/4)/(x-1)^2+(-1/2)/(x-1)+(-1/4)/(x+1)^2+(-1/2)/(x+1)#