How do you prove the identity #(sin^3x - cos^3x)/(sinx - cosx) =1 + sinxcosx#?

2 Answers
Dec 20, 2016

Start by factoring #sin^3x- cos^3x# using the difference of cubes formula #a^3 - b^3 = (a- b)(a^2 + ab + b^2)#.

So,

#(sin^3x - cos^3x)/(sinx - cosx) = 1 + sinxcosx#

#((sinx - cosx)(sin^2x + sinxcosx + cos^2x))/(sinx - cosx) = 1 + sinxcosx#

The #sinx - cosx# cancel each other out.

#sin^2x + sinxcosx + cos^2x = 1 + sinxcosx#

Use the identity #sin^2theta + cos^2theta = 1#:

#1 + sinxcosx = 1 + sinxcosx#

#LHS = RHS#

Hopefully this helps!

Dec 20, 2016

See below.

Explanation:

From the polynomial identity

#(a^3-b^3)/(a-b)=a^2+a b + b^2# we conclude that

#(sin^3x-cos^3x)/(sinx-cosx) = sin^2x+sin x cos x + cos^2x = 1+sinxcosx#