How do you find the indefinite integral of #int csc^2t/cott dt#?
2 Answers
Explanation:
Using the trig identity
# int csc^2t/cott \ dt = int (1+cot^2t)/cott \ dt#
# " " = int 1/cott+cot^2t/cott \ dt#
# " " = int tant+cott \ dt#
Then using the standard results:
# int tanx \ dt = ln |secx| " "(+c)#
# int cosx \ dt = ln |sinx| " "(+c)#
We get the solution where (
# int csc^2t/cott \ dt = ln |secx| + ln |sinx| + lnA#
# " "= ln |Asintsect| #
# " "= ln |Asint/cost| #
# " "= ln |Atant| #
Explanation:
Start by rewriting this integral in simpler trig functions (with respect to sine and cosine). We use the identities
#=> int(1/sin^2t)/(cost/sint) dt#
#=> int(1/sin^2t * sint/cost) dt#
#=> int(1/(sintcost))dt#
#=> int(1/(1/2sin2t))dt#
#=> int(2csc2t)dt#
#=> 2int(csc2t)dt#
We now let
#=> 2int(cscu)1/2du#
#=> int(cscu)du#
This is a trick integral to do. Expand the fraction by
#=>int((csc^2u + cotucscu)/(cscu+ cotu))dt#
Now make
#=>int((csc^2u + cotucscu)/(v)) * (dv)/(-(csc^2u + cotucscu))#
#=>int(-1/v)dv#
#=> -int(1/v)#
#=> -ln|v| + C#
#=> -ln|cscu + cotu| + C#
#=> -ln|csc(2t) + cot(2t)| + C#
Which can be simplified to
Hopefully this helps!